Sách - Toán - Giải Tích Lớp 12 - 9786040188953

5.0
44 Đánh Giá
77 Đã Bán
55
10.000 đ

Quận Tân Bình, TP. Hồ Chí Minh

thứ tư 26/05/2021 lúc 04:14 CH

THÔNG TIN CHI TIẾT
Công ty phát hành: Giáo Dục
Tác giả: Nhiều tác giả
Năm sản xuất: 2020
Nhà xuất bản: Giáo Dục Việt Nam
Trọng lượng: 50g
Kích thước: 16 x 24 cm
Hình thức Bìa mềm
Số trang: 160
-------------------------------------------
Giải Tích Lớp 12 - Toán - 9786040188953

Nội dung sách gồm các phần:

Ứng dụng đạo hàm để khảo sát vẽ đồ thị hàm số

Hàm số lũy thừa, hàm số mũ và hàm số logarit

Nguyên hàm, tích phân và ứng dụng

Số phức

BẢNG BIẾN THIÊN
+ Dạng 1. Nhận dạng bảng biến thiên.
+ Dạng 2. Bảng biến thiên với sự đơn điệu của hàm số.
+ Dạng 3. Bảng biến thiên với cực trị hàm số.
+ Dạng 4. Bảng biến thiên với gtln, gtnn của hàm số.
+ Dạng 5. Bảng biến thiên với tiệm cận của đồ thị hàm số.

ĐỒ THỊ HÀM SỐ
+ Dạng 1. Đồ thị với sự đơn điệu của hàm số.
+ Dạng 2. Đồ thị với cực trị hàm số.
+ Dạng 3. Đồ thị với GTLN, GTNN của hàm số.
+ Dạng 4. Đồ thị với tiệm cận của đồ thị hàm số.
+ Dạng 5. Nhận dạng đồ thị của các hàm số.
+ Dạng 6. Xét dấu các hệ số dựa vào bảng biến thiên và đồ thị.
+ Dạng 7. Xét sự tương giao bằng bảng biến thiên và đồ thị.
Sự tương giao sử dụng bảng biến thiên.
Sự tương giao sử dụng đồ thị hàm số.
+ Dạng 8. Đồ thị hàm trị tuyệt đối.
+ Dạng 9. Xét sự tương giao với bảng biến thiên và đồ thị hàm chứa trị tuyệt đối.
Sự tương giao sử dụng bảng biến thiên.
Sự tương giao sử dụng đồ thị hàm số.

TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
Dạng 1: Lý thuyết về tính đơn điệu của hàm số.
Dạng 2: Nhận dạng bảng biến thiên, nhận dạng hàm số.
Dạng 3: Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên).
Dạng 4: Xét tính đơn điệu của hàm số (biết y, y’).
Dạng 5: Điều kiện để hàm số bậc ba đơn điệu trên khoảng K.
Dạng 6: Điều kiện để hàm số nhất biến đơn điệu trên khoảng K.
Dạng 7: Điều kiện để hàm số trùng phương đơn điệu trên khoảng K.
Dạng 8: Điều kiên để hàm số phân thức (khác) đơn điệu trên khoảng K.
Dạng 9: Điều kiện để hàm số lượng giác đơn điệu trên khoảng K.
Dạng 10: Điều kiện để hàm số vô tỷ, hàm số khác đơn điệu trên K.
Dạng 11: Ứng dụng phương pháp hàm số vào đại số.

CỰC TRỊ HÀM SỐ
Dạng 1: Dạng toán khác về cực trị.
Dạng 2: Lý thuyết về cực trị của hàm số.
Dạng 3: Nhận dạng bảng biến thiên, nhận dạng hàm số.
Dạng 4: Đếm số điểm cực trị (biết đồ thị, bảng biến thiên).
Dạng 5: Đếm số điểm cực trị (biết y, y’).
Dạng 6: Tìm cực trị, điểm cực trị (biết đồ thị, bảng biến thiên).
Dạng 7: Tìm cực trị, điểm cực trị (biết y, y’).
Dạng 8: Điều kiện để hàm số có cực trị.
Dạng 9: Điều kiện để hàm số có cực trị tại x0 (cụ thể).
Dạng 10: Điều kiện để hàm số có cực trị, kèm giả thiết (theo x).
Dạng 11: Điều kiện để hàm số có cực trị, kèm giả thiết (theo y).
Dạng 12: Đường thẳng nối 2 điểm cực trị (đồ thị hàm số bậc ba).
Dạng 13: Đường thẳng nối 2 điểm cực trị (đồ thị hàm phân thức).
Dạng 14: Điều kiện hình học về 2 điểm cực trị (hàm bậc ba).
Dạng 15: Điều kiện hình học về tam giác cực trị

#nhasachnhanvan #giaitichlop12 #sachgiaokhoa #sachgiaoduc #mualesachgiaokhoalop12 #mualesachgiaokhoalop12nam2019 #sachgiaokhoalop12nam2019
Nhà Sách Nhân Văn, Cửa hàng trực tuyến | WebRaoVat - webraovat.net.vn

Nhà Sách Nhân Văn

Tham gia: 29-08-2020

Cùng người đăng

Top Sản Phẩm Bán Chạy

Sản phẩm liên quan

Sản phẩm liên quan

Sách Giáo Dục